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1. Introduction 

"All models are wrong, but some are useful." 
George Box 

When a computer system is expensive to use or is 
not often available, one may want to tune software for 
it via analytical models that run on more common, less 
costly machines. In contrast, if the host system is read- 
ily available, the attraction of analytical models is far 
less. One instead employs the actual system, testing 
and tuning its software empirically. Two examples of 
code scalability testing illustrate how these approaches 
differ in objectives and costs, and, how they comple- 
ment each other in usefulness. 

Concurrent computing requires scalable code [1,8, 
12]. Successes of a parallel application often fuel de- 
mands that it handle an expanded range. It should 
do this without undue waste of additional system re- 
sources. Definitions of scalability will vary according 
to circumstances — when looking for speedup, prob- 
lem size is fixed and the host system grows. In another 
case, one evaluates an enlarged problem together with 
a larger host [3]. The discussion that follows assumes 
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no particular scalability metric. As others have com- 
mented, "We report our research results only in terms 
of execution times, leaving the choice of a scalability 
metric to the user" [10]. 

SLALOM — the Scalable, Language-independent, 
Ames Laboratory, One-minute Measurement — is a 
code used here as a concrete example. SLALOM ranks 
computer systems by the accuracy they achieve on 
a realistic image rendering problem in radiosity [4]. 
Accuracy is denned as geometry "patches" computed 
during a test, which SLALOM adjusts automatically 
to one minute of execution. By fixing time, SLALOM 
accommodates a very broad spectrum of host systems. 
SLALOM'S original patch generation — used here — 
is 0(N3), a non-linearity that makes interpreting dis- 
tances between distinct "patch" ratings less intuitive. 
An 0(NlogN) patch generation improves compar- 
isons between systems, however, this variant is not so 
easily ported to new systems. A sequel benchmark, 
HINT, is "linear in answer quality, memory usage and 
number of operations" [5]. 

2. An analytical scalability model 

Code scalability can be evaluated analytically via 
structural models or empirically through multi-dimen- 
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Table 1 
Data from SLALOM benchmark 
Independent settings 
 X 
 

S 
 

Measured dependent response 
R (in 'patches') 
 

-1 
 

-1 
 

650 (a) 
 +1 

 
-1 
 

401 (b)  
 -1 

 
+1 
 

1167 (c) 
 +1 . 

 
+1 
 

85.3 (d)  
 

X = -1, +1 denote regular and slower versions, respectively, 
of the Setup phase of SLALOM. 

S = -1, +1 denote 4 and 32 processors, respectively, on an 
iPSC/860. 

sional curve fittings. Science has a long history of 
results predicted from analytical models constructed 
upon a prior body of knowledge. The analytical 
paradigm is: 

measure details => model => predict response 

With software, detailed measurement traces serve as 
input to a tailored model, which then yields a re- 
sponse corresponding within some accuracy to ac- 
tual observation. Imagine that a parallel version of 
SLALOM on a 4-processor iPSC/860 host has been 
modeled. Checking the model's predicted response of 
720 "patches" against an actual performance of 650 
(see entry (a) of Table 1) indicates a 10% overestima- 
tion of performance. Such checks begin to establish an 
appropriate level of confidence in the analytic model. 

Modeling Kernel, MK, is designed to avoid test- 
ing actual codes on critical and expensive production 
systems. Semi-automated, the tool kit MK supports 
scalability investigations of message-passing applica- 
tions [10]. The described version allows only deter- 
ministic message passing. Such a limitation in gen- 
erality is not unusual, since sound analytical mod- 
els may consume significant effort — prudent restric- 
tions diminish modeling costs. Within their chosen do- 
main of deterministic message passing, MK models 
are accurate enough to eliminate any need for full- 
scale tracing and tuning. The method claims 8-20% 
error, which is more than adequate for most code de- 
velopment. 

2.1. Use of the toolkit MK 

MK's analysis assumes that inter-processor com- 
munication dominates scalability concerns within the 
chosen class of scientific applications and host archi- 
tecture. A modeled program becomes a flow structure 
that, with some delays for computation, principally 
triggers the sending and receiving of messages. To do 
this, MK generates, decorates and evaluates a struc- 
turally condensed program parse tree: 
(a) Extract a parse skeleton involving control flow 
from the program's code and other invoked codes. 
The skeleton records structure for loops, condi- 
tionals, invocations and communications. 
(b) Add symbolic expressions and actual known val- 
ues on various bounds, such as iterations, branch- 
ing frequencies, message lengths and basic block 
execution times. Many instances have algebraic 
loop bounds. Branching frequencies come from 
actual execution traces. The modeler supplies sup- 
plementary data as needed. Data-dependent exe- 
cution behavior may require a hybrid technique 
(discussed later). 
(c) Augment tree nodes further by attaching commu- 
nication phase graphs. Each graph relates a num- 
ber of communication operations that together 
transport information among a set of processors 
during a phase. A data exchange exemplifies a 
synchronous phase. The pipeline distribution of 
data, on the other hand, typifies an asynchronous 
phase. An analysis of actual communication traces 
provides the basis for building the phase graphs. 
(d) Evaluate the decorated tree. MK can make two 
distinct evaluations here. The first is a symbolic 
interpretation of the tree; this yields an algebraic 
expression for runtime. The second evaluation 
generates a simulation time trace. 

Symbolic evaluation is preferable, since algebraic 
estimates are cheaper than simulations. However, mes- 
sage-passing depends upon sometimes complex inter- 
actions of topology, protocols, dependencies, traffic 
volume and distribution. Limiting these details in the 
model saves cost, but carrying this too far risks a com- 
plete loss of reliability. For example, with some pro- 
grams, having slower code for parallel routine A will 
accelerate completion. This occurs by diminishing the 
frequency with which the various A's send messages 
over congested interconnections. Message retransmis- 
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sions are then fewer. Execution is faster overall. This 
behavior must be captured in a model for such classes 
of program and host. It precludes any simple solution 
that ignores contention. The authors of MK are well 
aware of this, yet it appears that for some of their ini- 
tial work they can employ the less taxing symbolic 
evaluation. They remark that introducing simulation to 
handle more complex modeling causes a pronounced 
jump in MK's processing demands. However, traces 
from MK simulations provide excellent insights into 
performance shortcomings. 

3. An empirical scalability test 

Empirical modeling goes from an observable re- 
sponse to specific details: 

measure response => model => correlate with details 

In contrast to the analytic method, the response is mot 
generated by the model — it is measured off the actual 
system. Values of the response are correlated against 
details called factors [6], each factor having a limited 
number of settings (e.g., option Y set "on" or "off", 
module versions 5A, 5B or 5C) [2,6]. An observed 
response with software is some readily accessible 
characteristic, such as run time or average transactions 
per unit time [2]. SLALOM'S response is its "patches" 
in a one-minute trial. Given that the host system is 
readily available but perhaps not well understood, 
empirical scalability testing can be highly attractive. It 
is especially powerful at screening software factors to 
find those associated with performance problems [7]i. 

3.1. A handy test 

The following is an easy method for checking 
code components for scalability. Source code is not 
needed, only the ability to patch in delays. The actual 
system must be available for running the code. Table 1 
has measurements of a parallel version of SLALOM, 
where scalability for component Setup is in question. 
X and S are independent variables. X = -1 denotes 
the usual code for Setup. X = +1 denotes a slower 
Setup made by attaching to it an artificial delay. This 
computationally benign delay must be large enough to 
show up in measurements of response R. Critical to 
the test, a delay lowers Setup's efficiency by adding 

extra clock cycles. Similarly, S = +1 denotes a larger 
scale host system (32 processors in Table 1) and S = 
 -1 indicates a smaller scale host (4 processors). The 
measured response, R, is a dependent variable. An 
intuitive scalability test, given Table 1, is: 

 (1) 

In essence, as scaling up proceeds, the fractional 
drop in performance from added Setup cycles should 
not matter more than it did initially. Inserting values 
from Table 1 into (1), 

0.383 > 0.269 => Setup scales relative to SLALOM. 

3.2. More from the same measurements  

Test (1), above, is sensitive to errors in measure- 
ments a, b, c and d. Each measurement has vari- 
ation characterized as standard error, SE. SE arises 
from system background and interconnection actions, 
non-deterministic algorithms, coarse clocks and simi- 
lar factors. Experience shows distributed-memory as 
more variable than shared-memory. Observe that a 
highly variable host dictates a larger inserted delay, 
which if excessive will distort observations. 

Repeating each measurement four times and aver- 
aging will halve the standard error to SE' = SE/v 4. 
However, since a, b, c and d sample the same "noise" 
distribution whose mean is assumed zero, these four 
measurements can be manipulated to achieve the im- 
proved SE' without additional runs. 

3.3. EST: an improved Empirical Scalability Test 

Consider response R of Table I as a transfer func- 
tion R(X, S) with parameters X and S and a bivariate 

(Maclauren) expansion about zero [8]: 

(2) 
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For identifying scalability bottlenecks, most higher or- 
der terms of the expansion can be assumed unimpor- 
tant and thus set identically zero. Restricting inter- 
est to four major terms yields an approximate expan- 
sion: 

 
(3) 

 

(4) 

Test (4) restricts acceptance of the effect of Setup's 
delay under scaling to at most its current relative im- 

portance. Inserting µ = 767.75, ßx = -140.75, ßs = 

242.25 and ßx,s = -16.25 into (4), 

0.115 < 0.316 => Setup scales relative to SLALOM. 

Criterion (4) subsumes the earlier test (1). To see this 
let 

 

define the base state fractional drop in performance 
from Setup's delay AX analogous to (a — b)/a in 
test (1). Similarly, let 

denote the fractional drop in performance at scaling 
increment ? S caused by delay ? X; this corresponds 
to the earlier (c — d)/d. Condition (4) above assures 
that the square-bracketed fraction is no greater than 
unity, so as in test (1), 

4. MK and EST compared 

Table 2 highlights the quite different perspectives of 
MK and EST. Although MK's implementation is large, 
complex and relatively expensive, it also supplies co- 
pious details. An MK model explicitly expresses piv- 
otal structures and behaviors of the specimen program. 
EST is designed as a quick litmus test that locates bot- 
tlenecks without explaining them. It assumes a reason- 
ably well-behaved response surface within its range of 
test. Extrapolating EST results outside of this range 
poses a risk that must be offset by additional structural 
and behavioral knowledge. 

Demands upon the actual system are heavy for both 
approaches, but differ in origins and technical details. 
Avoiding full-scale runs is MK's raison d'etre. Lack- 
ing structural knowledge, EST relies upon actual full- 
scale execution behavior. It thereby avoids abstraction 
errors found in an analytic model, but pays with the 
cost of the runs. MK relies upon system tracings from 
smaller runs. These tracings, which generate model in- 
put data, can be vexing and costly: Good instrumenta- 
tion is not something one can expect on all scalable 
systems [9]. 

Complex interactions between specimen and host 
upset both methods. A performance region with a pro- 
nounced non-linear scaling response might throw EST 
off track. Closely spaced host sizes will help, but the 
cost of using EST rises [7]. MK can always incorporate 
further complexity into its model and simulation runs, 
but this becomes more expensive. Once constructed, 

 

F(a-b)/a > F(c-d)/c• 

 

 

=> Setup code scales. 

 

The right side of Eq. (3) expresses how performance 
R changes as X and 5 assume different settings, as 
in Table 1. Product XS, which is +1 only when X 
and S share a common setting, indicates an interac- 

tion. Linear in unknowns µ, ßx, ßs and  ßx,s, Eq. (3) 

is solved with values taken from Table 1. Parame- 
ter 

averages all responses to estimate a base state response 
at (X= 0,S=0). Coefficient 

 

 

is the sensitivity of R to Setup's change in efficiency. 
Coefficient 

expresses R's sensitivity as scale S changes — the in- 
vestigator defines what scale means. SLALOM in Ta- 
ble 1 has more processors and more problem calcu- 
lation at higher levels of scaling. Interaction coeffi- 
cient 

 

expresses how factor S affects factor X. The four 
terms define an improved test: 
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Table 2 
Contrasting analytical MK and empirical EST 

MK's model explores a large number of hypothetical 
variations at significantly reduced cost. EST, relying 
upon full-scale runs to provide structural information 
implicitly, retains a pay-by-the-test flavor. 

4.1. Hybrids 

Each approach can gain from the other. If EST's 
full-scale test runs of a code become impractical, the 
statistical underpinning can be adapted to use actual 
production runs. Doing this requires an analysis of the 
code's structure. Special structural knowledge creates 
other EST-like opportunities to assay crucial program 
structures, e.g., the barrier test in [11]. On the other 
hand, unpredictable, data-dependent control bothers 
the analytical structure of MK. In such circumstance^, 
analysis of a program's structure supplies few hints for 
interpretation bounds. MK solves this by employing 
statistical regression to build small (empirical) estima- 
tor expressions from data traces [10]. 

5. Conclusions 

Analytical testing incurs modeling expenses but 
yields a rich output. Empirical testing applies quickly 
and broadly but provides circumscribed results. Nei- 
ther approach dominates everywhere. System vendors 
and software engineers may prefer analytical tech- 
niques, from which they learn much. Vendors will 
amortize high modeling costs over many sales of the 
software. Service bureaus, on the other hand, just want 
to install and tune a code. In such circumstances, an 
empirical approach can make practical sense. Hybrids 
increase the utility of both methods. 

Notes. An earlier version of this paper appeared in 
the Proceedings of TDP'96 — International Confer- 
ence on Telecommunication, Distribution and Paral- 
lelism, June 1996, La Londe Les Maures, France. 
Support came from NIST Task 40131 and ARPA 
Task 7066. 

 
 

MK 
 

EST 
 Model type 

 
bottom-up — analytical construct built espe- 
cially for code tested to mimic its behaviors 

top-down — empirical fit to a general multi- 
dimensional response curve Input  

 
fine details 
 

factor settings and responses 
 Fundamental basis 

 
interpret structure of program and system 
 

correlate measured responses with code/host  
  

 
 
 

changes (settings)  
 Focus 

 
targeted to a specific system 
 

general, for any system 
 Tool size 

 
large and complex by nature 
 

small 
 Need for full scale runs 

 
none — reason for prediction model is to 
 

must have — lacks structural knowledge of 
  

 
avoid them : 
 

system 
 Data demands 

 
heavy — detailed trace capture and collec- 
 

light — response is easily captured 
  tion 

 
 

Demands upon actual system 
 

needs several smaller scale runs with trace 
 

has at least two full-scale runs and two runs 
  enabled 

 
at smaller scales 
 Tool processing demands 

 
heavy — abstract model interpretation 
 

light — solve 4 linear equations in (4) 
   unknowns 
 Explanatory power 

 
high — especially with dynamic behavior trace 
 

low — treats problem as transfer function 
 Model state space 

 
large and grows with scale 
 

small and fixed 
 Display 

 
typical visualization challenges 
 

scalable due to fixed state space 
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